Improved Euler Method Notes

Nick McNeal

December 042023

1 Improved Euler Method

The improved Euler method is defined by the equation

$$
y_{i+1}=y_{i}+\frac{h}{2}\left(f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i}+h f\left(x_{i}, y_{i}\right)\right)\right),
$$

which can be conveniently calculated with the following equations:

$$
\begin{gathered}
k_{1 i}=f\left(x_{i}, y_{i}\right), \\
k_{2 i}=f\left(x_{i}+h, y_{i}+h k_{1 i}\right), \\
y_{i+1}=y_{i}+\frac{h}{2}\left(k_{1 i}+k_{2 i}\right) .
\end{gathered}
$$

With the improved Euler method, we require two computations of f per step, instead of one (as in regular Euler). The regular Euler method provides us with a linear approximation to our solution (taking small steps along the tangent line at each point, approximating the curve as a set of connected lines). Improved Euler, however, provides us with a quadratic approximation. We take the average of the slopes of the endpoints of each subinterval. You could think of improved Euler as $y_{i+1}=y_{i}+$ trapezoid rule.

2 Sample Problem

Use the improved Euler method to find approximate values of the solution for the following problem:

$$
\begin{gathered}
y^{\prime}=-2 y+x^{3} e^{-2 x} \\
y(0)=1, \quad \text { for } x=0.1,0.2
\end{gathered}
$$

Solution.

We start with $x_{0}=0$ and, by the initial value condition, have $y_{0}=1$.
When x is equal to $0, \mathrm{y}=1$.
We can now solve using the improved Euler equations.

$$
\begin{gathered}
k_{10}=f\left(x_{0}, y_{0}\right)=f(0,1)=-2 \\
k_{20}=f\left(x_{1}, y_{0}+h k_{10}\right)=f(0.1,1+(0.1)(-2))=f(0.1,0.8)=-2(0.8)+(0.1)^{3} e^{-.2}=-1.5992 \ldots \\
y_{1}=y_{0}+\frac{h}{2}\left(k_{10}+k_{20}\right)=1+(0.05)(-2-1.5992 \ldots)=0.82004 \ldots
\end{gathered}
$$

When x is equal to $0.1, \mathrm{y} \approx .82004$.

$$
\begin{gathered}
k_{11}=f\left(x_{1}, y_{1}\right)=f(0.1, .82004 \ldots)=-2(0.82004 \ldots)+(0.1)^{3} e^{-0.2}-1.6393 \ldots \\
k_{21}=f\left(x_{2}, y_{1}+h k_{11}\right)=f(0.2,0.82004 \ldots+(0.1)(-1.6393 \ldots))=f(0.2,0.65611 \ldots)=-2(0.65611 \ldots)+(.2)^{3} e^{-0.4} \\
=-1.3069 \ldots \\
y_{2}=y_{1}+\frac{h}{2}\left(k_{11}+k_{21}\right)=0.82004 \ldots+(0.05)(-1.6393 \ldots-1.3069 \ldots)=0.67273 \ldots
\end{gathered}
$$

When x is equal to $0.2, \mathrm{y} \approx .67273$.
And we are done!

