
rate of cheyes

Salt Tank: Modelling
$Q(t)=$ amount of salt
Rate of charge $=\frac{d Q}{d t}=Q^{\prime}(t)$

$$
\frac{d Q}{d t}=\underbrace{C_{i}(t) r_{i}(t)}_{\text {salt entering }}-\underbrace{r_{0}(t) Q(t)}_{\substack{s_{a} \text { sit } \\ \text { exiting }}}
$$

E_{x}
A tank initially contains 200 gallons of fluid where 20 lbs oo f salt are dissolved. Brine containing 3 lbs salt/gallon enters at a rate of 5 gallon 1 min . Exits 5 gallons l minute. $Q(f)$ is salt at time t.
Write the DE and initial condition.

$$
\begin{gathered}
\frac{d Q}{d t}=\underbrace{L_{i}(t) r_{i}(t)}_{2}-\frac{Q(t)}{V(5)} r_{0}(t) \\
15-\frac{5 Q(t)}{200}
\end{gathered}
$$

$$
\left[\begin{array}{l}
\frac{d a}{d t}=15-\frac{Q(t)}{40}, \\
\theta(0)=20
\end{array}\right.
$$

Exp
10,000 bunnies in our City, Bunnies reproduce at an annual growth rate of 12%. Every month, 50 burris die. let $p(\lambda)$ be the current number of bunnies at time t. Let r be the growth rate for the compounding
pride. Write the DE
and initial conditions.

$$
\begin{aligned}
& p(0)=10,000, \\
& \frac{d p}{d t}=12 p-600 \\
& \frac{d p}{d t}=\begin{array}{r}
\text { bunnies } \\
\text { accumulates }
\end{array} \quad \text { buries }
\end{aligned}
$$

2.4

Ex. un. Thorn.

Consider IVP:

$$
\left\{\begin{array}{l}
y^{\prime}+p(t) y=g(t) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

If $p(t)$ and $g(t)$ are continuous functions on interval $\alpha<t<\beta$ and the interval contains t_{0}, then there is a unique solution to JUP on that interval.

$$
\left\{\begin{array}{l}
y^{\prime}+\frac{1}{x} y=4 \\
y(0)=1
\end{array}\right.
$$

Ex, Determine the interval of existence:

$$
\left\{t y^{\prime \prime}+3 y=t\right.
$$

$$
\left\{\begin{array}{l}
y(1)=1 \\
y^{\prime}(1)=2
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
y^{\prime \prime}+P(t) y^{\prime}+q^{(t)} y=g(1) \\
y^{\prime \prime}+\frac{3}{t} y=1 \\
y^{\prime \prime}+[0] y^{\prime}+\left[\frac{3}{t}\right] y=[1] \\
=0 \longrightarrow(-\infty, \infty) \\
-\frac{3}{t}=(-\infty, 0)(0, \infty) \\
-1=(-\infty, \infty)
\end{array}\right.
$$

