1.

$$
X^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
3 & 10
\end{array}\right] X
$$

(t) Find the general solution. we need the eigenvalues and eigenvectors.

$$
\left[\begin{array}{cc}
3 & -2 \\
3 & 10
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
3-\lambda & -2 \\
3 & 10-\lambda
\end{array}\right]
$$

Then, find the determinant. $a d-b c$.

$$
\begin{aligned}
& (3-\lambda)(10-\lambda)-(-2)(3) \\
= & 30-10 x-3 \lambda+\lambda^{2}+6
\end{aligned}
$$

$$
\begin{aligned}
& =30-13 \lambda+\lambda^{2}+6 \\
& =\lambda^{2}-13 \lambda+36 \\
& =(\lambda-9)(\lambda-4) \\
& \lambda_{1}=9 ; \lambda_{2}=4 .
\end{aligned}
$$

These are our eigenvalues.

$$
\left.\begin{array}{c}
\lambda_{1}=9 \\
{\left[\begin{array}{cc}
3-9 & -2 \\
3 & 10-9
\end{array}\right]} \\
=\left[\begin{array}{cc}
-6 & -2 \\
3 & 1
\end{array}\right]
\end{array} \quad \begin{array}{cc}
\lambda_{2}=4 \\
3-4 & -2 \\
3 & 10-4
\end{array}\right]
$$

Our eigenvector is

$$
\begin{aligned}
& \binom{b}{-2}, \text { or }\binom{-2}{6} \\
& =\binom{-1}{3}
\end{aligned}
$$

Our eigenvector

$$
\begin{gathered}
\binom{b}{-a} \text {, or }\binom{-2}{1} \\
=\binom{-2}{1}
\end{gathered}
$$

Now, we have
eigenvalue |: q
eigenvector 1:($\left.\begin{array}{r}-1 \\ 3\end{array}\right)$
eigenvalue 2: 4 eigenvector $2:\binom{-2}{1}$

Our general solution can be

$$
x(t)=C e^{\lambda t_{2}} q_{1}+C_{2} e^{\lambda t_{2} q_{2}} q_{2},
$$

where H$_{1,2}$ are our eigenvector.
So, we have

$$
x(t): C_{1} e^{9 t}\binom{-1}{3}+C_{2} e^{4 t}\binom{-2}{1}
$$

1B) Sketch the phase portrait.
our eigenvalues tell us the lines:

$$
\begin{aligned}
& \text { lines: } \\
& \binom{-1}{3} \Rightarrow y=\left(\frac{3}{-1}\right) x=-3 x \\
& \binom{-2}{1} \Rightarrow y=\left(\frac{1}{-2}\right) x=-\frac{1}{2} x
\end{aligned}
$$

Let's plot them!

Also, note positive eigenvalues
move away from the origin, and negative eigenvalues move toward the origin. Here, both our eisenvalues are positives

Also, it is moving faster toward the line associntel with the greater eigenvalue (eigenvalue $=9$, eigenvector: $\binom{-1}{3}$), Jo we can draw that in:

1() Solve the IUP.

$$
x(0)=\binom{3}{2} .
$$

$$
\begin{aligned}
& x(t)=C_{1} e^{q t}\binom{-1}{3}+C_{2} e^{4 t}\binom{-2}{1} . \\
& \binom{3}{2}=C_{1} e^{q(0)}\binom{-1}{3}+C_{2} e^{0}\binom{-2}{1} \\
& \binom{3}{2}=C_{1}\binom{-1}{3}+C_{2}\binom{-2}{1}
\end{aligned}
$$

(1) $3=-C_{1}-2 C_{2}$
(2) $2=3 C_{1}+C_{2} \Rightarrow C_{2}=2-3 C_{1}$

$$
\begin{aligned}
& 3=-C_{1}-2\left(2-3 C_{1}\right) \\
& 3=-C_{1}-4+6 C_{1} \\
& 5 C_{1}-4=3 \\
& \quad 5 C_{1}=7 \quad C_{1}=\frac{7}{5}
\end{aligned}
$$

Plug into (2):

$$
\begin{aligned}
& 2=3\left(\frac{7}{5}\right)+C_{2} \\
& 2=\frac{21}{5}+C_{2} \\
& C_{2}=2-\frac{21}{5} \\
& \\
& C_{2}=\frac{10}{5}-\frac{21}{5} \\
& \\
& \left.C C_{2}=-\frac{11}{5}\right] \\
& x(t)=\frac{7}{5} e^{9 t}\binom{-1}{3}-\frac{11}{5} e^{4 t}\binom{-2}{1}
\end{aligned}
$$

ld)
What is its
stability?

Unstable, both
eigenvalues are positive.

* Note, for eigenvalues.

2 Real Positive $=$ unstable sole
2 Real Negative = stable node Mixed pos/neg real = nestable saddle part

$$
\text { 2) } y^{\prime}=y^{3}+3 y^{2}+2 y
$$

Find the critical points and classing the stability.

$$
\text { (1) } \begin{aligned}
y^{\prime} & =y^{3}+3 y^{2}+2 y \\
& =y\left(y^{2}+3 y+2\right) \\
\Rightarrow & =y(y+2)(y+1) \\
\Rightarrow & y=0, \quad y=-2, y=-1
\end{aligned}
$$

Now, take the derivative of (1):
(2) $=3 y^{2}+6 y+2$

We car plug our fixed points into (2).
If >0, it is unstable.

$$
<0 \text {, it is stable. }
$$

$$
=0, \text { it requires further analysis. }
$$

i) $y=0 \Rightarrow 3(0)^{2}+6(0)+2=2$ unstable
ii) $y=-2 \Rightarrow 3(-2)^{2}+6(-2)+2=2$ unstable
iii) $y=-1 \Rightarrow 3(-1)^{2}+6(-1)+2=-1$ Stable

This makes sense, bc look at the graph for $y^{\prime}=y^{3}+3 y^{2}+2 y$
(our original problem):

$$
\begin{aligned}
& -=\leftarrow \\
& +=\rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \leftarrow \rightarrow=\text { unstable. } \\
& \rightarrow \leftarrow=\text { stable } .
\end{aligned}
$$

