1 -
There will be one problem on solving a system of hst order linear ODE's. For example,

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=1 x_{1}(t)+2 x_{2}(1) \\
& \frac{d x_{2}}{d t}=4 x_{1}(1)+3 x_{2}(t)
\end{aligned}
$$

1) Find eigenvalues
2) Find eigenvector's
3) Find General Solution
4) Plot phase portrait

Solution.

1) Find eigenvalues:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right]} \\
(1-\lambda)(3-\lambda)-(8) \\
3-3 \lambda-\lambda+\lambda^{2}-8 \\
\lambda^{2}-4 \lambda-5 \\
(\lambda+1)(\lambda-5) \\
\lambda_{2}=-1 \quad \lambda_{2}=5
\end{gathered}
$$

2) Find eigenvectors:

$$
\begin{aligned}
& \lambda,=-1 \\
& {\left[\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1-(-1) & 2 \\
-1 & 3-(-1)
\end{array}\right]} \\
& =\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]} \\
& 27_{1}+27_{2}=0 \\
& 1_{1}=-\eta_{2} \text { for } \eta_{2}=1 \\
& {\left[\begin{array}{c}
7_{2} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
& \lambda_{2}=5 \\
& {\left[\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1-5 & 2 \\
4 & 3-5
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-4 & 2 \\
4 & -2
\end{array}\right]} \\
& \left.\left[\begin{array}{cc}
-4 & 2 \\
4 & -2
\end{array}\right] \prod_{1}^{1} 1_{2}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& -47_{1}+27_{2}=0 \\
& 27_{2}=47_{1} \\
& r_{2}=27_{1} \\
& {\left[\begin{array}{l}
7, \\
27,
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]^{8.0^{1-1}}}
\end{aligned}
$$

$$
V_{1}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$$
V_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

3) General Solution:

$$
\begin{aligned}
& y(t)=C_{1} e^{\lambda_{1}} v_{1}+C_{2} e^{\lambda_{2} t} v_{2} \\
& y(t)=C_{1} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+C_{2} e^{5 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

2 -
The second problem will ask you to solve the Initial Value Problem for a 3×3 matrix. You will know the eigenvalues and eigenvectors from the problem statement. The notation of the problem may seem unusual, but don't worry! Only a few computations are required. If you are doing a lot of math, you are probably over thinking this problem.

Q2 will look something like:
Q2. Solve the IVP $\frac{d x}{d t}: A x(t), x(0)=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$. where A is a constant matrix 3×3 satisfying'

$$
\begin{aligned}
& \text { i) } A\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=0 \\
& \text { ii) }(A-3 I)\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=0
\end{aligned}
$$

iii) The vector $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ is an eigenvector of A with eigenvalue -1 .

Again, we are actually told our eigenvalues and eigenvectors.
First, remember that to obtain eigenvector, we have

$$
(A-\lambda I)[V]=0
$$

So, for

$$
\text { i) } A\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=0 \Rightarrow(A-O I)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)=0
$$

eigenvalue $=0$
eigenvector= $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
ii) $(A-3 I)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=0$
eigenvalue $=3$
eigen vector: $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
iii) It is given to us that
eigenvalue $=-1$
eigenvector $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.

Here is how to solve:
General Solution:

$$
\begin{aligned}
& x(t)=C_{1} e^{0 t}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+C_{2} e^{3+}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{3} e^{-t}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& =C_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+C_{2} e^{3 t}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{3} e^{-t}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
\end{aligned}
$$

IVP.

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+C_{2} e^{3(1)}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+C_{3} e^{-0}\left[\begin{array}{l}
0 \\
0
\end{array}\right] . } \\
& {\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]=C_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+C_{3}\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \\
& 0= C_{1}+C_{2} \\
& 0= 2 C_{1}+C_{3} \\
& 2= C_{3} \\
& \underline{C_{3}=2} \\
& 0= 2 C_{1}+2 \\
& C_{1}=-1
\end{aligned}
$$

$$
\begin{gathered}
0=C_{1}+C_{2} \\
0=-1+C_{2} \\
C_{2}=1
\end{gathered}
$$

So, the Solution to the

$$
\frac{C_{1}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]+C_{2} e^{3 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+C_{3 e} e^{-t}\left[\begin{array}{l}
0 \\
1
\end{array}\right]}{x(t)=-\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+e^{3 t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2 e^{-t}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]}
$$

3 - This question has 3 parts:

1) What

2) Find the maximum interval of exolence of the solution of

is

the highest
order
derivative of y)
3)

$$
y^{\prime \prime}+\frac{1}{t-2} y^{\prime}+2 y=e^{t}
$$

First, let Then,

$$
\begin{aligned}
& u_{1}^{\prime} y^{\prime} \quad \begin{array}{l}
u_{1}^{\prime}=y^{\prime}=u_{2} \\
u_{2}=y^{\prime}
\end{array} \\
& u_{2}^{\prime}=y^{\prime \prime} \\
& u_{2}^{\prime \prime}=y^{\prime \prime}=-\frac{1}{x-2} y^{\prime}-2 y+e^{x} \\
& u_{2}^{\prime}=-2 u_{2}-2 u_{1}+e^{+} \\
& u_{1}^{\prime}=u_{2} \\
& u_{2}^{\prime}=-\frac{1}{t-2} u_{2}-2 u_{1}+e^{t}
\end{aligned}
$$

3) Max interval:

$$
y^{\prime \prime}+\frac{1}{t-2} y^{\prime}+2 y=e^{t}
$$

a) Put in Standard Form (This one already is)
b) Consider the function coefficients:
$\frac{1}{t-2} \rightarrow$ continual or $\underset{\substack{(-\infty, 2) \\(2, \infty)}}{ }$ me
$2 \rightarrow$ Lortniau, on $(-\infty, \infty)$
$e^{t} \rightarrow$ continuous on $(-\infty, \infty)$
$I V R$ is $y(0)=1, y^{\prime}(0)=0$. the maximum oveclegping interval containing is

$$
(-\infty, 2)
$$

