There will be one problem on solving a system of 1st order linear ODE's. For example,

$$\frac{dx_{i}}{dt} = 1x_{i}(t) + 2x_{2}(t)$$
1) Find eigenvalues
2) Find eigenvalues
3) Find General Solution
$$\frac{dx_{2}}{dt} = 4x_{i}(t) + 3x_{2}(t)$$
4) Plot phase portrait

Solution. 1) Find eigenvalues; $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \implies \begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix}$ $= (1-\lambda)(3-\lambda) - (8)$ 3-31-2+2-8 22-42-5 (2 + 1)(2 - 5) $\lambda_{z} = 1$ $\lambda_{z} = 5$

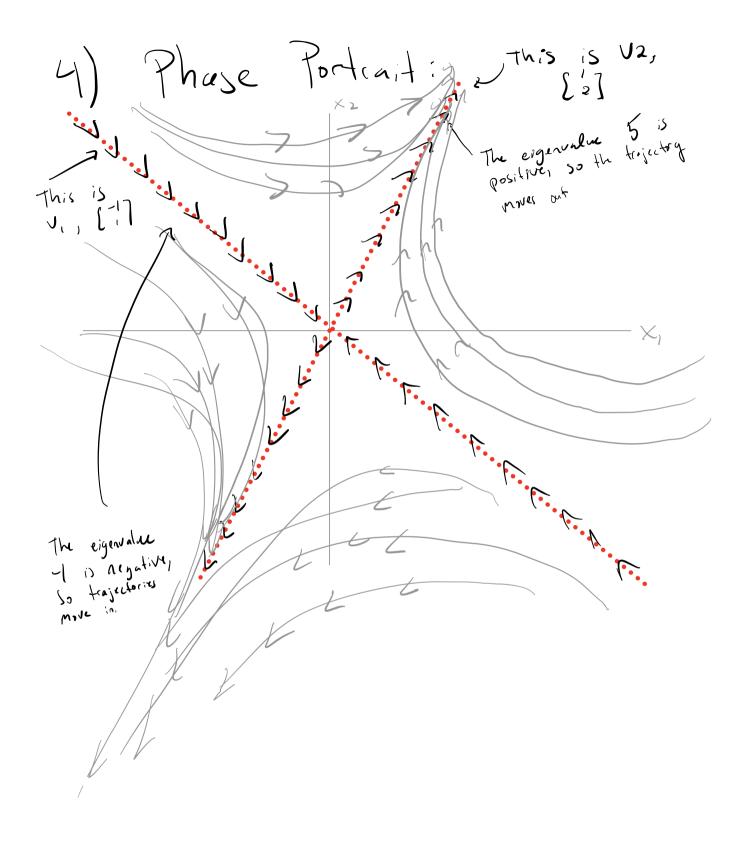
1 -

2) Find eigenvectors:

$$\begin{array}{c} \lambda_{1}z-l & \lambda_{2}z-S \\ \left[\frac{1}{2} & 2 \\ 1 & 3-\lambda \right] & \left[\frac{1}{2} & 2 \\ 1 & 3-\lambda \right] \\ \left[\frac{1-c(l)}{2} & \left[\frac{1-S}{2} & 2 \\ 1 & 3-\lambda \right] \\ \left[\frac{1-c(l)}{2} & \left[\frac{1-S}{2} & 2 \\ 1 & 3-\lambda \right] \\ \left[\frac{1-S}{2} & 3-\lambda \right]$$

 $\mathcal{A}^{I} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $V_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

3) General Solution: y(H)= (e'v, + Cze Vz y(+): Ciellin + Caellin



The second problem will ask you to solve the Initial Value Problem for a 3x3 matrix. You will know the eigenvalues and eigenvectors from the problem statement. The notation of the problem may seem unusual, but don't worry! Only a few computations are required. If you are doing a lot of math, you are probably over thinking this problem. . . .

Q2 will look something like:
Q2. Solve the IVP
$$\frac{1}{44}$$
: Ax(4), x(d) = $\begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$.
where A is a constant matrix 3x3 satisfying:
i) A $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0$
ii) $(A - 3I) \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = 0$,
iii) $(A - 3I) \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} = 0$,
iii) The vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an
eigenvector of A with
eigenvalue -1.

Again, we are actually told our eigenvalues and eigenvectors.

First, remember that to obtain
First, remember that to obtain
eigenvectors we have

$$(A - \sum I) [V] = D$$
.
So, for
 $A [\frac{1}{2}] = D \implies (A - DI) (\frac{1}{2}) = 0$

2 -

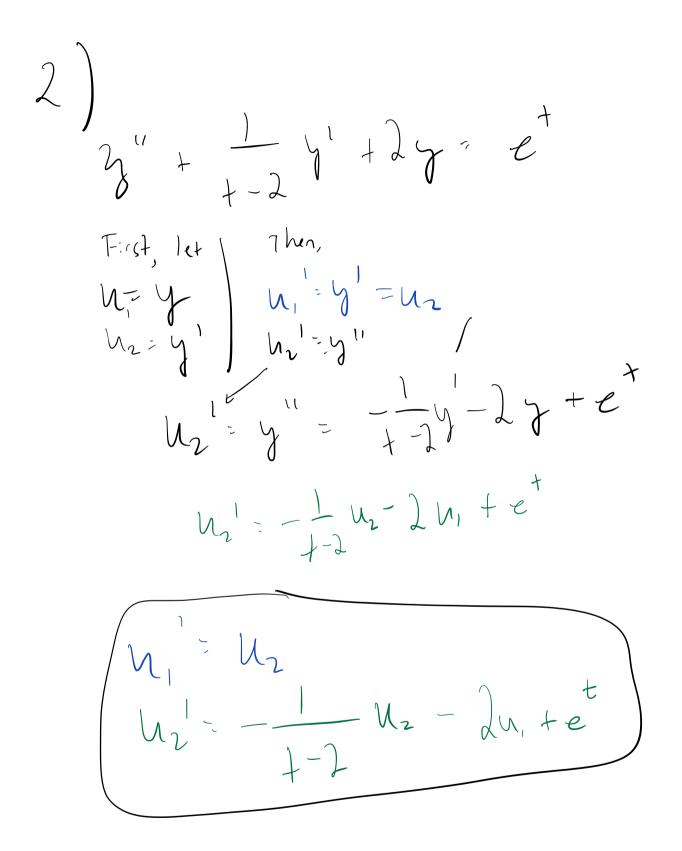
Here is how to solve:
General Johntion:

$$x(4) = C_1 e^{0t} \left[\frac{1}{2} \right] + C_2 e^{3t} \left[\frac{1}{0} \right] + \left(\frac{-t}{3} e^{-t} \left[\frac{0}{1} \right] \right)$$

 $= C_1 \left[\frac{1}{2} \right] + C_2 e^{3t} \left[\frac{1}{0} \right] + C_3 e^{-t} \left[\frac{0}{1} \right]$

 $\left(\right) - \left(\right) + \left(\right) \right)$ $) = -1 \downarrow ()$ $\left(7 \leq \right)$ to the So, the Solution IVP ;s: $C \begin{bmatrix} 2 \\ 2 \end{bmatrix} + C \\ 2 \end{bmatrix} + C \\ 3 \\ 4 \\ 5 \\ 1 \end{bmatrix} + C \\ 3 \\ 4 \\ 5 \\ 1 \end{bmatrix}$ $X(4) = -\begin{bmatrix} 2\\ 2 \end{bmatrix} + e \begin{bmatrix} 2\\ 0 \end{bmatrix} + 2e \begin{bmatrix} 2\\ 1 \end{bmatrix}$

3 - This question has 3 parts:



3) Max interval: $3'' + \frac{1}{1-2} y' + 2y = e^{t}$ a) Put in Standard Form (This one already is) b) Consider the function Loefficients. t-2) (ontinuous on (t+2) and (2, no) 2 -> Lontinuors on (21,20) et -> continuous on (-20,20)

IVP : 5 y(d=1, y'(d)=0the maximum overlapping intervul containing D īS $) (-\infty, 2) \int$