Math 2552 Quiz 4 Review

March 102024

1 Method of Undetermined Coefficients

Find one particular real-valued solution of the following second-order linear ordinary differential equation:

$$
y^{\prime \prime}+5 y^{\prime}+4 y=(t+1) e^{2 t}
$$

Solution.

To find a particular real-valued solution of the given second-order linear ordinary differential equation, we can use the method of undetermined coefficients.

The characteristic equation of the associated homogeneous equation is:

$$
r^{2}+5 r+4=0
$$

The roots of this characteristic equation are $r_{1}=-1$ and $r_{2}=-4$, which means the homogeneous solution is given by:

$$
y_{c}(t)=c_{1} e^{-t}+c_{2} e^{-4 t}
$$

where c_{1} and c_{2} are constants.
Now, we can find the particular solution. We assume the particular solution has the form:

$$
y_{p}(t)=(A t+B) e^{2 t} .
$$

We know this from the following chart:

$\underline{d(x)}$	Particular Solution:
$\alpha e^{\beta x}$	$A e^{\beta x}$
$\alpha \cos (\beta x)$	$A \cos (\beta x)+B \sin (\beta x)$
$\alpha \sin (\beta x)$	$A \cos (\beta x)+B \sin (\beta x)$
$\alpha x^{n}+\cdots+\gamma x+\delta$	$A x^{n}+\cdots+Y x+Z$
$\left(\alpha x^{n}+\cdots+\gamma x+\delta\right) e^{\beta x}$	$\left(A x^{n}+\cdots+Y x+Z\right) e^{\beta x}$

Figure 1: Our table of guesses for the particular solution.
Now, we'll find y_{p}^{\prime} and $y_{p}^{\prime \prime}$:

$$
\begin{aligned}
y_{p}^{\prime}(t) & =A e^{2 t}+2 A t e^{2 t}+2 B e^{2 t} \\
y_{p}^{\prime \prime}(t) & =4 A e^{2 t}+4 A t e^{2 t}+4 B e^{2 t}
\end{aligned}
$$

Now, substitute these into the original ODE:

$$
\left(4 A e^{2 t}+4 A t e^{2 t}+4 B e^{2 t}\right)+5\left(A e^{2 t}+2 A t e^{2 t}+2 B e^{2 t}\right)+4\left(A t e^{2 t}+B e^{2 t}\right)=(t+1) e^{2 t}
$$

Expand:

$$
4 A e^{2 t}+4 A t e^{2 t}+4 B e^{2 t}+5 A e^{2 t}+10 A t e^{2 t}+10 B e^{2 t}+4 A t e^{2 t}+4 B e^{2 t}=(t+1) e^{2 t}
$$

Simplify:

$$
9 A e^{2 t}+18 A t e^{2 t}+18 B e^{2 t}=(t+1) e^{2 t}
$$

Group like terms:

$$
(9 A+18 B) e^{2 t}+(18 A) t e^{2 t}=(t+1) e^{2 t}
$$

We equate the coefficients of like terms on both sides:

$$
\begin{gathered}
9 A+18 B=1 \quad\left(\text { coefficient of } e^{2 t}\right) \\
18 A=1 \quad\left(\text { coefficient of } t e^{2 t}\right)
\end{gathered}
$$

Solving these equations, we find $A=\frac{1}{18}$ and $B=\frac{1}{36}$. Therefore, the particular solution is:

$$
y_{p}(t)=\left(\frac{1}{18} t+\frac{1}{36}\right) e^{2 t}
$$

If we were asked to find the general solution, we compute the sum of the complementary and particular solutions:

$$
y(t)=y_{c}(t)+y_{p}(t)=c_{1} e^{-t}+c_{2} e^{-4 t}+\left(\frac{1}{18} t+\frac{1}{36}\right) e^{2 t}
$$

2 Method of Undetermined Coefficients (again!)

Find one particular real-valued solution of the following second-order linear ordinary differential equation:

$$
y^{\prime \prime}+9 y=\cos (3 t)+9
$$

Solution.

First, we solve for the complementary solution:

$$
\begin{gathered}
r^{2}+9=0 \\
r^{2}=-9 \\
r= \pm 3 i
\end{gathered}
$$

We have complex roots. The complementary solution for a given complex root $r=\alpha+\beta i$ is of the form

$$
y_{c}=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right) .
$$

Therefore, for the root $0+3 i$ we have

$$
y_{c}=e^{0 t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)
$$

or

$$
y_{c}=C_{1} \cos (3 t)+C_{2} \sin (3 t)
$$

Now, we need an appropriate guess for our RHS. The RHS of the differential equation is $\cos (3 t)+$ 9. Let's consider y_{p} as the sum of two parts, $y_{p 1}$ and $y_{p 2}$. For the first term $\left(y_{p 1}\right)$, if our RHS is $\alpha \cos (\beta t)$, then a reasonable guess is $A \cos (\beta t)+B \sin (\beta t)$, where A and B are some unknown coefficients. For the second term $\left(y_{p 2}\right)$, we know that a constant is a zeroth-degree polynomial, so our guess is just some constant C^{1}. We can identify these guesses from Figure 1.

Therefore, our guess could be $y_{p}=y_{p 1}+y_{p 2}=(A \cos (3 t)+B \sin (3 t))+C$. However, there is an issue with $y_{p 1}$. Since we already have that $\cos (3 t)$ is a solution (in our complementary solution), we need to multiply our guess $y_{p 1}$ by t. Our final guess for the particular solution becomes:

$$
t(A \cos (3 t)+B \sin (3 t))+C
$$

[^0]$$
A t \cos (3 t)+B t \sin (3 t)+C
$$

Now, we can solve for A and B. First, let's find y_{p}^{\prime} and $y_{p}^{\prime \prime 2}$:

$$
\begin{gathered}
y_{p}^{\prime}=A(\cos (3 x)-3 t(\sin (3 t))+B(\sin (3 t)+3 t \cos (3 t)) \\
y_{p}^{\prime \prime}=A(-9 t \cos (3 t)-6 \sin (3 t))+B(6 \cos (3 t)-9 t \sin (3 t))
\end{gathered}
$$

Let's substitute this into our original differential equation $y^{\prime \prime}+9 y=\cos (3 t)+9$:

$$
A(-9 t \cos (3 t)-6 \sin (3 t))+B(6 \cos (3 t)-9 t \sin (3 t))+9(A t \cos (3 t)+B t \sin (3 t)+C)=9+\cos (3 t)
$$

We expand terms:

$$
-9 A t \cos (3 t)-6 A \sin (3 t)+6 B \cos (3 t)-9 B t \sin (3 t)+9 A t \cos (3 t)+9 B t \sin (3 t)+9 C=9+\cos (3 t)
$$

We simplify:

$$
-6 A \sin (3 t)+6 B \cos (3 t)+9 C=9+\cos (3 t)
$$

Let's equate the coefficients on both sides.

$$
\begin{gathered}
-6 A=0 \quad(\text { coefficient of } \sin (3 t) \\
6 B=1 \quad(\text { coefficient of } \cos (3 t) \\
9 C=9 \quad(\text { constant term on the right side })
\end{gathered}
$$

Therefore, $A=0, B=\frac{1}{6}$, and $C=1$. $y_{p}=A t \cos (3 t)+B t \sin (3 t)+C$, so

$$
y_{p}=\frac{1}{6} t \sin (3 t)+1
$$

If we wanted the general solution, we compute $y_{g}=y_{c}+y_{p}$, and we have

$$
y_{g}=C_{1} \cos (3 t)+C_{2} \sin (3 t)+\frac{1}{6} t \sin (3 t)+1
$$

and we are done!

3 LRC-series circuit

Find the charge on q on the capacitor on an LRC-series circuit when $L=.5$ Henry, $R=1 \mathrm{ohm}$, $C=.5$ Faraday, $E(t)=0$ Volts, $q(0)=2, q^{\prime}(0)=0$.

Solution.

Recall the differential equation:

$$
L q^{\prime \prime}+R q^{\prime}+\frac{q}{C}=E(t)
$$

Let's substitute in our values for L, R, and C :

$$
.5 q^{\prime \prime}+1 q^{\prime}+\frac{q}{.5}=0
$$

Putting this in standard form,

$$
q^{\prime \prime}+2 q^{\prime}+4 q=0
$$

Let's use quadratic formula to find our roots:

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

[^1]\[

$$
\begin{gathered}
\lambda_{1,2}=\frac{-2 \pm \sqrt{2^{2}-4(1)(4)}}{2(1)} \\
\lambda_{1,2}=\frac{-2 \pm \sqrt{-12}}{2}=\frac{-2 \pm 2 \sqrt{-3}}{2} \\
\lambda_{1,2}=-1 \pm \sqrt{-3}=-1 \pm \sqrt{3} i
\end{gathered}
$$
\]

For a complex root $\alpha \pm \beta i$, our solution can be written:

$$
q(t)=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right.
$$

so our general solution is

$$
q(t)=e^{-t}\left(C_{1} \cos (\sqrt{3} t)+C_{2} \sin (\sqrt{3} t)\right)
$$

Now, we will solve the initial value problem.
We know that $q(0)=2$, so we have

$$
2=e^{(0)}\left(C_{1} \cos (0)+C_{2} \sin (0)=C_{1},\right.
$$

so

$$
C_{1}=2
$$

Since we are given that $q^{\prime}(0)=0$, we can differentiate ${ }^{3} q$:

$$
\begin{gathered}
q(t)=C_{1} e^{-t} \cos (\sqrt{3} t)+C_{2} e^{-t} \sin (\sqrt{3} t) \\
q^{\prime}(t)=C_{1}\left(-\sqrt{3} e^{-t} \sin (\sqrt{3} t)-e^{-t} \cos (\sqrt{3} t)\right)+C_{2}\left(\sqrt{3} e^{-t} \cos (\sqrt{3} t)-e^{-t} \sin (\sqrt{3} t)\right)
\end{gathered}
$$

Using $q^{\prime}(0)=0$, we have

$$
\begin{gathered}
0=C_{1}(-\sqrt{3} \sin (0)-\cos (0))+C_{2}(\sqrt{3} \cos (0)-\sin (0)) \\
0=C_{1}(-1)+C_{2}(\sqrt{3})
\end{gathered}
$$

Using $C_{1}=2$, we have

$$
0=-2+\sqrt{3} C_{2}
$$

SO

The solution to the initial value problem is therefore

$$
q(t)=e^{-t}\left(2 \cos (\sqrt{3} t)+\frac{2}{\sqrt{3}} \sin (\sqrt{3} t)\right.
$$

4 Method of Undetermined Coefficients (theory)

Theory question: Consider a non-homogeneous second-order differential equation for which we would like to use the method of undetermined coefficients. We have some non-homogeneous term $d(x)$, and so we use the table in Figure 1 to inform us about the form of our particular solution. What if our guess for the particular solution is equal to a solution in the complementary solution? What if the complementary solution has repeated roots? Is the method of undetermined coefficients guaranteed to provide us with a correct particular solution for any second-order differential equation?

Solution

If our guess is equal to to a solution in the complementary solution, we multiply our guess by t.
In the case of repeated roots in the complementary solution, we cannot multiply our particular solution by t, because this is also a solution (recall the general solution to a characteristic solution with repeated roots). Therefore, we must multiply guess by t again (introducing a t^{2} variable). Any time our guess for the particular solution is linearly dependent on the fundamental set of solutions, we can multiply by t again.

No, the method of undetermined coefficients is not guaranteed to provide us with a correct particular solution. Undetermined coefficients will usually fail on equations with variable coefficients.

[^2]
[^0]: ${ }^{1}$ This constant C is independent from C_{1} and C_{2} in our complementary solution.

[^1]: ${ }^{2}$ We can use product rule to solve these!

[^2]: ${ }^{3}$ product rule again!

